
HYPERSPECTRAL REMOTE SENSING 

 

Introduction 

Hyperspectral remote sensing is one of the advance technology which began in early 1980s is 

one of the most significant breakthroughs in remote sensing. It emerged as a promising 

technology in remote sensing for studying earth surface materials by two ways spectrally & 

spatially.In this technology imaging and spectroscopy is combinedin a single system so this is 

also known as imaging spectroscopy. This technology is developed by breaking a broad band 

from the visible and infra-red into hundreds of spectral parts to obtain geochemical information 

from inaccessible planetary surfaces.  Hyperspectral remote sensing is able to provide a high 

level of performance in spectral & radiometric calibration accuracy in the data sets. These high 

performing sensors data can be utilized for extracting information in various quantitative and 

qualitative applications. The ample spectral information provided by hyperspectral data is able to 

identify and distinguish spectrally similar materials which enhance the capability of 

distinguishing various ground objects in detail. Hyperspectral sensorscollect information as a 

series of narrow and contiguous wavelength bands at 10 to 20 nm intervals. The spectra for a 

single pixel in hyperspectral data appears similar like a laboratory quality spectra collected by a 

spectro-radiometer which can be used for understanding the spectral characteristics of the 

material.  

 

Principle of Imaging Spectroscopy 

As Hyperspectral Remote sensing technology is also known as Imaging Spectroscopy which is 

considered to be as combination of three following photonic technologies:  

(i) conventional imaging,  

(ii) spectroscopy, & 

(iii) radiometry  

Above three technologies are used to produce images for which a spectral signature is associated 

with each pixel. The position of imaging spectroscopy and other related technologies is shown in 

Figure 1. The datasets produced by hyperspectral imager is in the form of a three dimensional 

datacube in which two dimensions represents spatial information and third dimension represents 

spectral information. The values recorded by Spectral Imager Instrument can be converted, via 

proper calibration, to radiometric quantities that are related to the scene phenomenology (e.g., 

radiance, reflectance, emissivity, etc.). This technology is having capability to support various 

applications by providing a link to spatial and spectral analytical models, spectral libraries, etc.  



 
Figure 1. Relationship among Radiometric, Spectrometric, and Imaging Techniques (Elachi 

1987) 

Spectroscopy depends on the pretext that different materials are different because of the 

difference in their constituents & structure and because of that they interact differently with light 

so they appear different. The aim of Imaging Spectroscopy is to understand the Earth's surface 

through the detailed analysis of its reflected light, exploiting subtle variations in surface 

composition and structure in support of real-world requirements. For spectroscopic study, 

hyperspectral data sets provide ample spectral detail to discern the subtle differences in color 

distributions from Earth surface materials. Because Earth's surface is populated with the 

molecules of the solids and liquids and having characteristic spectral features generally wider 

than some tens of nanometers, which establishes a practical definition for the maximum spectral 

band size for a hyperspectral data set.  

The reflectance spectra of most of the Earth's surface materials contain characteristic or 

diagnostic absorption features in the spectral range of 400 to 2500 nm. Since these diagnostic 

features are typically of a very narrow spectral appearance, those surface materials can be 

identified directly, if the spectrum is sampled at sufficiently high spectral resolution which 

becomes possible using imaging spectrometers. There are three types of main absorption features 

found generally in the spectral range of 400 to 2500 nm regions which should be understood to 

realize the requirement of hyperspectral imaging system. 

a. Charge transfer absorptions: These types of absorptions are caused by light at certain 

wavelengths causing electrons to be transferred between atoms and generally occur in the 

visible region of the spectrum, and. For example: Fe3+ and Fe2+. Light at the proper 

wavelength causes an electron to be transferred from a Fe2+ atom to a Fe3+ atom and due to 

that rusty objects appear red. Detection of this type of absorption is easy as they are quite 

broad, so it is possible to detect thoseusing conventional multispectral sensors. Asthere is 

overlap among the absorptions caused by different atoms, so Hyperspectral sensors are 

required to tell them apart.  



b. Electron transition absorptions: In atoms with an incomplete electron shell, light at the 

proper wavelength can bump electrons into different positions in the shell. These absorptions 

tend to be narrower than the charge transfer absorptions, and the type of atom and the 

position and variety of its neighbors controls the wavelengths of the absorptions. This feature 

is especially useful in geology, where the arrangement of atoms in a mineral is very well 

defined. Since subtle variations in the position of the band centre are important, it is 

necessary to have many narrowly spaced bands to take advantage of this feature.  

c. Vibrational absorptions: When light at the same wavelength as a molecule (or part of a 

molecule) strikes the molecule, it causes the molecule (or part of the molecule) to vibrate. 

This leads to light absorption. In general these absorptions are very narrow, although their 

widths and depths vary. Many of the absorptions seen in the 0.4 to 2.5µm region actually 

originate at longer wavelengths, and what we are seeing are combinations and overtones of 

the original wavelength. Most of these absorptions can be detected with a multispectral 

sensor. 

Actual detection of materials is dependent on the spectral coverage, spectral resolution, and 

signal-to-noise ratio of the spectrometer, the abundance of the material and the strength of 

absorption features for that material in the wavelength region measured. Most natural Earth 

surface materials have diagnostic absorption features in the 400 -2500 nm range of the reflected 

spectrum. Since the diagnostic features for each material are apparent over very narrow spectral 

bands, differences between materials can only be identified if the spectrum is sampled at a 

sufficiently high resolution. The benefit of hyperspectral remote sensing is that the information 

about the ground objects can be recorded in a very narrow spectral range hence minute 

alterations can be mapped.  

 

Multispectral Vs Hyperspectral 

Multispectral datasets are produced by sensors which record reflected electromagnetic energy 

within some specific sections orbroad bands of the electromagnetic spectrum. These Sensors 

usually produce 3 to 10 number of spectral bands which ranges from visible to near infrared 

region. However, the spectral resolution and mineral discrimination power is very low. Example 

of multispectral satellite sensors are Landsat, Spot and IRS satellites. 

Hyperspectral sensors measure energy in narrower and more numerous bands than multispectral 

sensors. Hyperspectral data contains100s or more narrow contiguous spectral bands. The 

numerous narrow bands of hyperspectral sensors provide a continuous spectral measurement 

across the entire electromagnetic spectrum and therefore are more sensitive to subtle variations 

in reflected energy.  

Images produced from hyperspectral sensors contain much more data than images from 

multispectral sensors and have a greater potential to detect differences among land and water 

features. Hyperspectral sensors are having capability to detect and distinguish individual 

absorption bands in mineral deposits, vegetation and man-made materials. This discrimination is 

achieved by spectral sampling at approximately 10 nm intervals across the spectrum. 



Multispectral images can be used to map forested areas, while hyperspectral images can be used 

to map tree species within the forest. 

 
Figure 2.Comparison between hyperspectral and multispectral sensors (source:ITRES) 

 

Hyperspectral Data 

Hyperspectral remote sensing data sets are generally represented as a data cube with spatial 

information collected in the X-Y plane, and spectral information represented in the Z-direction. 

The hyperspectral data sets are composed of about 100 to 200 narrow and contiguous wavelength 

bands at bandwidths of about 5-10 nm. The spectra for a single pixel in hyperspectral data 

appears similar like a laboratory quality spectrawhich can be used for understanding the spectral 

characteristics of the material.Due to the ample spectral information provided by hyperspectral 

data it is easy to identify and distinguish spectrally similar materials. 



Figure 3.Hyperspectral Remote Sensing (Source: NEMO) 

 

Hyperspectral Remote Sensing Sensors 

Now-a-days there are many ground-based and airborne hyperspectral sensors but very few 

spaceborne hyperspectral sensors are available. Various airborne and spaceborne hyperspectral 

sensors developed by several space agencies national & international are in Table 1 & Table 2: 

Table 1: Airborne Hyperspectral Sensors 

Sensor Spectral 

coverage 

(nm) 

No. of 

Bands 

Band 

width 

(nm) 

Spatial 

Resolution 

(m) 

Image tech Country Launched 

/developer 

GERIS(Geophysical 

Environment Research 

Imaging Spectrometer II) 

400 - 1000  

1400 - 1800 

2000 - 2500 

24 

7 

32 

25.4 

120.0 

16.5 

 

1-10  

 

Whisk 

broom 

 

USA 

 

1987/GRE 

corp. 

AVIRIS(Airborne visible 

infrared imaging 

spectrometer) 

 

380-2500 

 

 

220  

 

 

10 

 

5-20  

 

Whisk 

broom 

 

USA 

 

1987/JPL 

 

CASI(Compact Airborne 

Imaging Spectrometer)  

 

400-800 

 

288 

 

1.8 

 

30 

 

Pushbroom 

 

Canada 

1988/ITRES 

research Ltd 

DAIS (Digital Airborne 

Imaging Spectrometer)  

400-1200 

1500-1800 

2000-2500 

 

72 

15-30 

45 

20 

 

1-10 

 

Pushbroom 

 

Europe 

 

1995/GRE 

corp. 



 

 Table2:Spaceborne Hyperspectral sensors 

Sensor Spectral 

coverage (nm) 

No. of 

Bands 

Band 

width 

(nm) 

Spatial 

Resolution 

(m) 

Swath 

(km) 

launch 

Year 

Agency 

  

Moderate Resolution 

Imaging Spectrometer 

(MODIS)- AQUA  

 

MODIS-  TERA 

 

 

400 - 800 

 

 

800 - 1455 

 

32 

 

 

36 

  

250-1000 

 

 

250-1000 

 

1500  

 

 

2300  

 

May 

2002 

 

Dec 

1999 

 

NASA 

 

MERIS (Medium Resolution 

Imaging Spectrometer) 

410to1050 15 10 Ocean: 1040x 

1200,  

Land & coast: 

260 x 300 

 

1150 

 ESA 

 

Hyperion on EO-1 400-2500  220 10 3 7.5 Nov 

2000 

NASA 

CHRIS (Compact High 

Resolution  Imaging 

Spectrometer on PROBA-1) 

 

438 -1035 

 

 

18-64 

 

1.25- 

11 

 

 

18-36  

 

14-18 

 

Oct  

2001 

 

ESA 

HySI(Hyperspectral Imager) 

on IMS-1 

400 - 950 64 <15 550 128 Apr 

2008 

ISRO 

Extraterrestrial hyperspectral sensors 

Chandrayaan-1 HySI 400 - 920 64 15 80 20 2008 ISRO 

Chandrayaan-1 M3 (Moon 

Mineralogy Mapper) 

400 - 3000 86 10-40 

 

70-140  40 2008 ISRO  

OMEGA(Observatoire pour 

la Mineralogie, l’Eau, le 

Glace e l’Activite) 

360 to5100  7-20 300-4000 8.8  NASA 

CRISM (Compact 

Reconnaissance Imaging 

Spectrometer for Mars) 

362-3920 

 

545 6.55 15.7 to 19.7  9.4 - 

11.9 

 NASA 

 

 

 

HYDICE(Hyperspectral 

Data Image Collection 

Experiment) 

400 - 2500 

 

10.2 210 3 Whisk 

broom 

USA 1996/Naval 

research 

 lab 

HyMAP 400 - 2500 16 

 

125 

 

3-5 Whisk 

broom 

Australia HyVista 

Corp 

AisaEAGLE 400 - 970 5 200 <1   Spectir Corp 



Hyperspectral Data Processing 

For effective utilization of Hyperspectral sensors data sets, different kind of processing and 

analyzing techniques are required for various applications. All the Hyperspectral sensors 

developed have enabled generation of remotely sensed laboratory spectra of various materials 

such as rocks, soils, plants, snow, ice, water and man-made materials. These laboratory quality 

spectra have been used to obtain compositional information of the earth surface as they are able 

to detect absorption features caused by minerals in visible, SWIR and TIR region of 

electromagnetic spectrum. AVIRIS sensor by NASA JPL has been used especially for the 

mapping of cations and anion for identification of various minerals and rocks. The large amount 

of spectral information in hyperspectral data is useful for species level discrimination by 

identifying components unique to certain species of plants. This hyperspectral technology also 

provides a means for optical oceanographers to classify and quantify complex oceanic 

environments.  

Data Pre-Processing Techniques 

The processing of the hyperspectral data sets are more complex as it contains large number of 

spectral bands which results in larger data volume. The hyperspectral data quality is also affected 

by the random sensor errors and noise which causes low signal to noise ratio. These data sets are 

also affected by atmospheric errors, so preprocessing of hyperspectral data is required, pre-

processing includes sensor & atmospheric error removal and image rectification. 

Sensor error correction 

Most of the hyperspectral sensors like Hyperion are pushbroom scanners in which poorly 

calibrated detectors produces vertical bad lines on the image. Due to the poor calibration the bad 

lines is having different values then neighboring pixels either the values are constant or lower 

than the neighboring values. These bad lines can be corrected by replacing their DN values with 

the average DN values of their immediate left and right neighboring pixels because of the high 

spatial correlation. 

Atmospheric correction 

The atmosphere scatters some of the electromagnetic energy which travels from the sun to the 

Earth’s surface and from Earth’s surface to the sensor. Therefore, the electromagnetic energy 

received at the sensor may be more or less than that due to reflectance from the earth’s surface 

alone. Atmospheric correction attempts to minimize these effects on image spectra. Atmospheric 

correction is traditionally considered to be indispensable before quantitative image analysis using 

hyperspectral data. Various atmospheric correction algorithms have been developed to calculate 

concentrations of atmospheric gases directly from the from hyperspectral data. Atmospheric 

correction is divided into two types: Relative and absolute methods.  

1.Relative method is divided into three types 

a. Flat field correction 

b. Empirical line correction 

c.  Internal apparent relative reflectance correction 



2.Absolute atmospheric correction. This method is based on some atmospheric correction 

models which require the information regarding the atmospheric condition, altitude, geometry 

between sun and the satellite, aerosol level, water absorption, time of acquisition of the image 

and more details. The absolute atmospheric correction methods have the advantage over other 

methods that these can be run under any atmospheric condition. Some of them are  

a. FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes); an 

atmospheric correction modeling tool in ENVI for retrieving spectral reflectance from 

hyperspectral radiance images. FLAASH incorporates the MODTRAN 4 radiation transfer 

model to compensate for atmospheric effects. 

b. ATCOR (Atmospheric and Topographic CORrection): ATCOR algorithm has been 

developed in the last decade in two different types (ATCOR 2 and ATCOR 3) which are 

created by Dr. Richter of the German Aerospace Center - DLR. For nearly horizontal 

surface or flat terrain, ATCOR 2 is a spatially-adaptive fast atmospheric correction 

algorithm, whereas, ATCOR 3 is designed for rugged topographical surface, hence a 

Digital Elevation Model (DEM) is used in the ATCOR 3 algorithm for atmospheric 

correction. 

c. ATREM (Atmospheric REMoval Program): ATREM is software developed by the 

University of Colorado for retrieving scaled surface reflectance from hyperspectral data 

using a radiative transfer model. 

d. ACORN (Atmospheric CORrection Now): The Atmospheric CORrection Now 

(ACORN) software package provides an atmospheric correction of Hyperspectral and 

Multispectral data measured in the spectral range from 350 to 2500 nm. It is also based on 

MODTRAN 4 radiative transfer code. 

Data Dimensionality Reduction 

Although, the hyperspectral data are both voluminous and multidimensional, nowadays with the 

availability of advanced computing systems that possess high speed processors and enormous 

storage power, data volume is no longer a constraint. The problem lies in the data redundancy 

that needs to be removed to obtain the bands with maximum information. 

Much of the data does not add to the inherent information content for a particular application, 

even though it often helps in discovering that information; it contains redundancies. The data 

recorded by hyperspectral sensors often have substantial overlap of information content over the 

bands of data recorded for a given pixel. In such cases, not all of the data are needed to 

characterise a pixel properly, although redundant data may be different for different applications. 

Data redundancy can take two forms; spatial and spectral. Since hyperspectral imagery has more 

spectral concern, one way of viewing spectral redundancy in hyperspectral data is to form the 

correlation matrix for an image; the correlation matrix can be derived from the covariance 

matrix. High correlation between band pairs indicates high degree of redundancy. For example, 

PCT (Principal Component Transformation) assist in removing redundancy since decorrelation 

followed by a discarding of low variance components amounts to redundancy reduction. 



Probably the most common approach is to employ some sort of linear transformation on the 

original dataset to produce a smaller set of factors or components. Most of the original variance 

is retained with a significant reduction in data volume. 

Principal Component Analysis (PCA) 

PCA transform multidimensional image data into a new, uncorrelated co-ordinate system or 

vector space. It produces a space in which the data have maximum variance along its first axis, 

the next largest variance along a second mutually orthogonal axis and so on. Sometimes even the 

lower-order PC's may contain valuable information. The later principal components would be 

expected, in general, to show little variance. These could be considered therefore to contribute 

little to separability and could be ignored, thereby reducing the essential dimensionality of the 

classification space and thus improving classification speed . Stated differently, the purpose of 

this process is to compress all the information contained in an original n – band data set into 

fewer than n “new bands” or components . The components are then used in lieu of the original 

data. These transformations may be applied as a preprocessing procedure prior to automated 

classification process of the data.  

Minimum Noise Fraction (MNF) 

The bands in a hyperspectral dataset have differing noise levels (S/N). It may be desirable to 

filter or remove those bands that contribute most to noise. When the bands of a hyperspectral 

dataset have differing amounts of noise, a standard principal components (PC) transform will not 

produce components with a steadily increasing noise level. This makes it difficult to select a 

cutoff point. To achieve a components dataset that does have increasing noise (decreasing S/N), 

a modified PC transform, termed the Minimum Noise Fraction (MNF) has been developed 

(Green et al. 1988, Lee et al. 1990). 

This transformation is mainly used to reduce the dimensionality of hyperspectral data and 

developed as an alternative to PCA. It is defined as a two-step cascaded PCA. The first step, 

based on an estimated noise covariance matrix, is to decorrelate and rescale the data noise, where 

the noise has unit variance and no band-to-band correlations. The next step is a standard PCA of 

the noise-whitened data. 

The MNF transformation is a linear transformation related to PC that orders the data according to 

signal-to-noise-ratio. It determines the inherent dimensionality of the data, segregates noise in 

the data and reduces the computational requirements for subsequent processing. It partitions the 

data space into two parts: one associated with large eigenvalues and coherent eigenimages, and a 

second with near-unity eigenvalues and noise-dominated images. By using only the coherent 

portions in subsequent processing, the noise is separated from the data, thus improving spectral 

processing results. 

 

 

 



Ground/Laboratory Spectra Acquisition 

Ground based/laboratory spectra acquisition is required to serve various purposes in the context 

of hyperspectral data acquisition and analysis. The purpose of collection of Ground 

based/laboratory spectra are for  

 providing critical information for calibration of data and atmospheric correction,  

 providing spectral library for identification of materials and comparison with the results 

with hyperspectral data, and  

 validation of mapping results obtained using hyperspectral data.  

Calibration and Atmospheric Correction  

For obtaining accurate results calibrating and atmospheric correction is a requirement for most 

hyperspectral data analysis process. The identification and mapping of materials and material 

properties is best accomplished by deriving the fundamental properties of the surface, its 

reflectance, while removing the interfering effects of atmospheric absorption and scattering, the 

solar spectrum, and instrumental biases. Calibration to surface reflectance is inherently simple in 

concept, yet it is very complex in practice because atmospheric radiative transfer models and the 

solar spectrum have not been characterized with sufficient accuracy to correct the data to the 

precision of some currently available instruments, such as the NASA/JPL Airborne Visible and 

Infra-Red Imaging Spectrometer.  

The objectives of calibrating remote sensing data are to remove the effects of the atmosphere 

(scattering and absorption) and to convert from radiance values received at the sensor to 

reflectance values of the land surface. The advantages offered by calibrated surface reflectance 

spectra  compared to uncorrected radiance data include: 1) the shapes of the calibrated spectra 

are principally influenced by the chemical and physical properties of surface materials, 2) the 

calibrated remotely-sensed spectra can be compared with field and laboratory spectra of known 

materials, and 3) the calibrated data may be analyzed using spectroscopic methods that isolate 

absorption features and relate them to chemical bonds and physical properties of materials. Thus, 

greater confidence may be placed in the maps of derived from calibrated reflectance data, in 

which errors may be viewed to arise from problems in interpretation rather than incorrect input 

data. 

Spectral Libraries  

Spectral Libraries are collections of spectra of different surface materials generated from 

laboratory & ground based measurement and used as the reference against which hyperspectral 

imaging data are compared to determine earth surface material’s composition. Spectral libraries 

contain spectra of individual species, Often grouped by surface type (vegetation vs. soils vs. 

man-made materials etc.) and sometimes by grain size fraction (influence on spectra) acquired at 

test sites representative of varied terrain and climatic zones.These are principally used for 

identification of mineralogy, but also contain some spectra of vegetation, man-made materials, 

snow-ice, and water.  There are a variety of spectral libraries for earth-surface materials available 

e.g. spectral library included in ENVI software and ASTER speclib on the internet. 

 



Endmember extraction 

Theoretically the existing pure features in mixed pixels are refered to as endmembers. Selection 

and identification of spectral endmembers in an image is the key point to success of the linear 

spectral mixing model. A set of endmembers should allow the description of all spectral 

variability for all pixels. Two different approaches have generally been used to define 

endmembers in a mixing model: 

 Use of the existing library of reflectance spectra 

 extraction of the purest pixels from the image data itself 

Endmembers resulting through the first option are denoted as known endmembers whereas the 

second option results in derived endmembers. Because of the difficulties of access to spectral 

library or field measurement of spectral properties of land cover types of interest, endmember 

data of the known ground cover types can be extracted from the Hyperspectral data.  

The Pixel Purity Index (PPI) algorithm for Endmember selection is based on the geometry of 

convex sets. A dimensionality reduction is first performed using the MNF transform. Next, a 

pixel purity index is calculated for each point in the image cube by randomly generating lines in 

the N-dimensional space comprising a scatterplot of the MNF transformed data. All of the points 

in the space are now projected onto the lines and those ones that fall at the extremes of the lines 

are counted.  After many repeated projections to different lines, those pixels that count above a 

certain threshold are declared “pure”.  These potential endmember spectra are loaded into an N-

dimensional visualization tool and rotated in real time until extremities in the data cloud that will 

likely correspond with scene endmembers are visually identified.  

Hyperspectral Data Classification 

There are many techniques developed for extracting extensive information contained in 

hyperspectral data Most of these algorithms Spectral analysis methods usually compare pixel 

spectra with a reference (or target) spectrum. Target spectra can be derived from a variety of 

sources, including spectral libraries, regions of interest within a spectral image, or individual 

pixels within a spectral image. The most commonly used method for information extraction 

using hyperspectral data are 

Per Pixel Classification Methods 

The Per pixel classification methods attempt to determine the abundances of one or more target 

materials within each pixel in a hyperspectral data on the basis of the spectral similarity between 

the pixel and target spectra. These methods include standard supervised classifiers such as 

Minimum Distance or Maximum Likelihood and classifiers developed specifically for 

classifying hyperspectral data such as Spectral Angle Mapper and Spectral Feature Fitting. 

 

 

 



Spectral Angle Mapper Classification 

SAM is an automated method for comparing image spectra to individual spectra or to a spectral 

library (Boardman, unpublished data; CSES, 1992; Kruse et al., 1993a). SAM assumes that the 

data have been reduced to apparent reflectance (true reflectance multiplied by some unknown 

gain factor, controlled by topography and shadows). The algorithm determines the similarity 

between two spectra by calculating the spectral angle between them, treating them as vectors in 

n-D space, where n is the number of bands. SAM considers every pixel in the scene and 

evaluates the similarity of the spectra to repress the influence of the shading, which accentuates 

the characteristics of reflectance. The image spectrum is then assigned a correlation factor 

between 0 (low correlation) and 1 (high correlation) 

and compared to a spectral library or endmember. 

With SAM, the data are converted to apparent 

reflectance, which is the true reflectance with gain 

coefficients that are defined by terrain and lighting 

conditions.Consider a reference spectrum and an 

unknown spectrum from two-band data. The two 

different materials are represented in a 2D scatter plot 

by a point for each given illumination, or as a line 

(vector) for all possible illuminations.   

Because SAM uses only the direction of the spectra, 

not the length, SAM is insensitive to the unknown gain factor. All possible illuminations are 

treated equally. Poorly illuminated pixels fall closer to the origin of the scatter plot. The color of 

a material is defined by the direction of its unit vector. The angle between the vectors is the 

same, regardless of the length. The length of the vector relates only to how fully the pixel is 

illuminated. The SAM algorithm generalizes this geometric interpretation to n-D space. SAM 

determines the similarity of an unknown spectrum t to a reference spectrum r, by applying the 

following equation:   

 

 

 

 

 

where nb equals the number of bands in the image.   

The spectral angle is the angle between any two vectors originating from a common origin. The 

magnitude of the angle indicates the similarity or dissimilarity of the materials—a smaller angle 

correlates to a more similar spectral signature. This method is relatively insensitive to changes in 

illumination on the target material because changes in light will impact the magnitude but not the 



direction of the vector. A poorly illuminated target will cause the points to be plotted closer to 

the origin.  

Spectral Feature Fitting 

Spectral Feature Fitting is a method developed by the U. S. Geological Survey for analyzing 

hyperspectral data which is an absorption-feature-based method for matching image spectra to 

reference endmembers. Most methods used for analysis of hyperspectral data still do not directly 

identify specific materials. They only indicate how similar the material is to another known 

material or how unique it is with respect to other materials. Techniques for direct identification 

of materials, however, via extraction of specific spectral features from field and laboratory 

reflectance spectra have been in use for many years. At first these techniques have been applied 

to hyperspectral data for geologic applications. 

Prior to analysis this method requires data should be reduced to reflectance and that a continuum 

be removed from the reflectance data. A continuum is a mathematical function used to isolate a 

particular absorption feature for analysis. It corresponds to a background signal unrelated to 

specific absorption features of interest. Spectra are normalized to a common reference using a 

continuum formed by defining high points of the spectrum (local maxima) and fitting straight 

line segments between these points. The continuum is removed by dividing it into the original 

spectrum.  

Spectral feature fitting requires that reference endmembers be selected from either the image or a 

spectral library, that both the reference and unknown spectra have the continuum removed, and 

that each reference endmember spectrum be scaled to match the unknown spectrum. A “Scale” 

image is produced for each endmember selected for analysis by first subtracting the continuum-

removed spectra from one, thus inverting them and making the continuum zero. A single 

multiplicative scaling factor is then determined that makes the reference spectrum match the 

unknown spectrum. 

Assuming that a reasonable spectral range has been selected, a large scaling factor is equivalent 

to a deep spectral feature, while a small scaling factor indicates a weak spectral feature. A least-

squares-fit is then calculated band-by-band between each reference endmember and the unknown 

spectrum. The total root-mean-square (RMS) error is used to form an RMS error image for each 

endmember. An optional ratio image of Scale/RMS provides a “Fit” image that is a measure of 

how well the unknown spectrum matches the reference spectrum on a pixel-by-pixel basis. 

Sub-Pixel Classification 

Sub-pixel analysis methods can be used to calculate the quantity of target materials in each pixel 

of an image. Sub-pixel analysis can detect quantities of a target that are much smaller than the 

pixel size itself. In cases of good spectral contrast between a target and its background, sub-pixel 

analysis has detected targets covering as little as 1-3% of the pixel. Sub-pixel analysis methods 

include Complete Linear Spectral Unmixing, and Matched Filtering. 

 



Linear Spectral Unmixing 

Linear Spectral Unmixing is a means of determining the relative abundances of materials 

depicted in multispectral imagery based on the material’s spectral characteristics. The reflectance 

at each pixel of the image is assumed to be a linear combination of the reflectance of each 

material (or endmember) present within the pixel. There are certain limitations that apply for the 

linear spectral unmixing technique. The number of endmembers must be less than the number of 

spectral bands and all of the endmembers in the image must be used for an efficient mapping 

result. Spectral unmixing results are highly dependent on the input endmembers and changing 

the endmembers will change the results. 

Unmixing simply solves a set of n linear equations for each pixel, where n is the number of 

bands in the image. The unknown variables in these equations are the fractions of each 

endmember in the pixel. To be able to solve the linear equations for the unknown pixel fractions 

it is necessary to have more equations than unknowns, which means that we need more bands 

than endmember materials. With hyperspectral data this is almost always true. The results of 

Linear Spectral Unmixing include one abundance image for each endmember. The pixel values 

in these images indicate the percentage of the pixel made up of that endmember. For example, if 

a pixel in an abundance image for the endmember quartz has a value of 0.90, then 90% of the 

area of the pixel contains quartz. An error image is also usually calculated to help evaluate the 

success of the unmixing analysis. 

Mixture tuned matched filtering 

Matched Filtering is one of the unmixing type in which user chosen target spectra can be mapped 

(Boardman et al., 1995). In Complete Unmixing, to get an accurate analysis finding out the 

spectra of all endmembers from the data are required but this type of unmixing is called a ‘partial 

unmixing’ because the unmixing equations are only partially solved. Matched Filtering was 

originally developed to compute abundances of targets that are relatively rare in the scene. If the 

target is not rare, special care must be taken when applying and interpreting Matched Filtering 

results. 

Matched Filtering “filters” the input image for good matches to the chosen target spectrum by 

maximizing the response of the target spectrum within the data and suppressing the response of 

everything else (which is treated as a composite unknown background to the target). Like 

Complete Unmixing, a pixel value in the output image is proportional to the fraction of the pixel 

that contains the target material. Any pixel with a value of 0 or less would be interpreted as 

background (i.e., none of the target is present). The problem with Matched Filtering is that it is 

possible to end up with false positive results, but solution to this problem is to calculate an 

additional measure called “infeasibility”. Infeasibility is based on both noise and image statistics 

and indicates the degree to which the Matched Filtering result is a feasible mixture of the target 

and the background. Pixels with high infeasibilities are likely to be false positives regardless of 

their matched filter value. 



Mixture-Tuned Matched filter results are presented as two sets of images, the MF score 

(Matched Filter image), presented as gray-scale images with values from 0 to 1.0, which provide 

a means of estimating relative degree of match to the reference spectrum (where 1.0 is a perfect 

match) and the Infeasibility image, where highly infeasible numbers indicate that mixing 

between the composite background and the target is not feasible. The best match to a target is 

obtained when the Matched Filter Score is high (near 1) and the infeasibility score is low (near 

0). 

Hyperspectral Remote Sensing Applications 

Hyperspectral data has been used to identify and distinguish spectrally similar materials having 

characteristic reflectance spectra. Due to the capability of distinguishing various ground objects 

in detail, hyperspectral datasets are able to detect and map a wide variety of materials.  

 Mineral Targeting: Spectral reflectance in visible and near-infrared offers a rapid and 

inexpensive technique for determining the mineralogy of samples and obtaining information 

on chemical composition. 

 Soils: Obtaining quantitative information about soil chemistry, its genetic and fertility 

classification. Study of soil parameters such as organic matter, soil moisture, particle size 

distribution iron oxide content, soil structure etc. The hyperspectral data with improved 

radiometric and spatial resolution will help in deriving an improved vegetation/soil indices 

that will maximize sensitivity to plant biophysical parameters, increase sensitivity to the 

vegetation signal and normalize atmosphere and ground contamination noise influence.  

 Vegetation: Study of species diversity, environmental stress, physiological features such as 

photosynthetic activity, plant productivity, canopy biochemistry, biomass and plant 

transpiration. Also for evaluation of vegetation stress, nutrient stress, moisture stress and 

crop growth models.  

 Atmosphere: Study of atmospheric parameters such as clouds, aerosol conditions and water 

vapor monitoring, large scale atmospheric variations as a result of environmental change. 

 Oceanography: Measurement of photosynthetic potential by detection of phytoplankton, 

detection of yellow substance and detection of suspended matter. It also helps in 

investigations of water quality, monitoring coastal erosion. 

 Snow and Ice: Spatial distribution of various types of snow cover, surface albedo and snow 

water equivalent. Calculation of energy balance of a snow pack, estimation of snow 

properties-snow grain size, snow depth and liquid water content. 

 Oil Spills: When oil spills in an area affected by wind, waves, and tides, a rapid and 

assessment of the damage can help to maximize the cleanup efforts. Environmentally 

sensitive areas can be targeted for protection and cleanup, and the long-term damage can be 

minimized. Time sequence images of the oil can guide efforts in real-time by providing 

relative concentrations and accurate locations 
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